تشخیص احساسات از طریق ترکیب داده های مربوط به حالت چهره و سیگنال های بیولوژیکی

پایان نامه
چکیده

چکیده: دراین پایان نامه،روشی جدید با بهره گیری از ترکیب داده های مربوط به تصاویر چهره و سیگنال های بیولوژیکی جهت تشخیص هرچه دقیق تر احساسات انسانی ارائه شده است. برای استخراج ویژگی از تصاویر چهره، از شیوه تحلیل مولفه های اصلی و برای استخراج ویژگی از سیگنال های بیولوژیکی، از دو نوع تحلیل در حوزه زمان و فرکانس استفاده شده است. طبقه بندی ویژگی های استخراج شده، توسط چند نوع طبقه بندی کننده قدرتمند همچون ماشین بردار پشتیبان و نزدیک ترین میانگین صورت گرفته است. از روش ترکیب داده های مربوط به تصاویر چهره و سیگنال های بیولوژیکی در دو سطح ویژگی و طبقه بندی جهت تشخیص احساسات در سه بعد ظرفیت، برانگیختگی و علاقه مندی استفاده شده است. برای ارزیابی عملکرد، روش های پیشنهادی بر روی تصاویر احساسی چهره و سیگنال های بیولوژیکی مغزی و محیطی از سی ودو نفر شرکت کننده، اعمال شدند. بهترین نتیجه تشخیص احساسات از طریق ترکیب سیگنال های بیولوژیکی در بعد ظرفیت 74/32 درصد، در بعد برانگیختگی 70/27 درصد و در بعد علاقه مندی 72/97 درصد حاصل شد. در نهایت، با ترکیب سیگنال های بیولوژیکی و تصاویر چهره در بعد ظرفیت 81/76 درصد، در بعد برانگیختگی 85/81 درصد و در بعد علاقه-مندی 77/03 درصد تشخیص موفق بدست آمد که نتایج نسبت به روش های پیشین بهبود چشمگیری داشته اند.

منابع مشابه

تشخیص احساسات از سیگنال های گفتار براساس روش های فیلتر

گفتار ابزار اولیه ارتباط بین انسان‌‌ می‌باشد. با افزایش تراکنش میان انسان و ماشین نیاز به محاوره خودکار این دو و حذف کاربر انسانی مورد توجه قرار گرفته است.هدف از انجام این تحقیق، تعیین یک مجموعه از ویژگی‌های تاثیر گذار در تشخیص احساسات مبتنی بر سیگنال صحبت می‌باشد. در این مقاله، سیستمی طراحی گردید که شامل سه بخش اصلی، استخراج ویژگی، انتخاب ویژگی و طبقه‌بندی می‌باشد. پس از استخراج ویژگی‌های پرکا...

متن کامل

تشخیص احساسات از سیگنال های گفتار براساس روش های فیلتر

گفتار ابزار اولیه ارتباط بین انسان‌‌ می‌باشد. با افزایش تراکنش میان انسان و ماشین نیاز به محاوره خودکار این دو و حذف کاربر انسانی مورد توجه قرار گرفته است.هدف از انجام این تحقیق، تعیین یک مجموعه از ویژگی‌های تاثیر گذار در تشخیص احساسات مبتنی بر سیگنال صحبت می‌باشد. در این مقاله، سیستمی طراحی گردید که شامل سه بخش اصلی، استخراج ویژگی، انتخاب ویژگی و طبقه‌بندی می‌باشد. پس از استخراج ویژگی‌های پرکا...

متن کامل

تجزیه و تحلیل احساسات افراد از طریق سیگنال های مغزی با استفاده از تابع نگاشت پوانکاره

Introduction: Dynamic alterations of the brain are of high significance when it comes to analyze the human feelings. In this study, the hidden patterns corresponding for the emotional states have been investigated by adopting a certain Poincare’ map function inspired by the theory of chaos. The present study aimed to explore the significance relationship between the proposed methodology and the...

متن کامل

تشخیص احساسات از سیگنال های گفتار براساس روش های فیلتر

گفتار ابزار اولیه ارتباط بین انسان می باشد. با افزایش تراکنش میان انسان و ماشین نیاز به محاوره خودکار این دو و حذف کاربر انسانی مورد توجه قرار گرفته است.هدف از انجام این تحقیق، تعیین یک مجموعه از ویژگی های تاثیر گذار در تشخیص احساسات مبتنی بر سیگنال صحبت می باشد. در این مقاله، سیستمی طراحی گردید که شامل سه بخش اصلی، استخراج ویژگی، انتخاب ویژگی و طبقه بندی می باشد. پس از استخراج ویژگی های پرکارب...

متن کامل

سبک های دلبستگی و توانایی بازشناسی حالت های هیجانی چهره

جلوه­های هیجانی چهره یکی از پیچیده­ترین حالت­های ذهنی است. هدف از این مطالعه­ بررسی رابطه­ی بین سبک­های دلبستگی و توانایی بازشناسی جلوه­های هیجانی چهره بود. در یک مطالعه­ی مقطعی 221 نفر (100 زن و 121 مرد) از دانشجویان دانشگاه شهید بهشتی از طریق روش نمونه­گیری در دسترس انتخاب شدند و نسخه­ی کامپیوتری تجدیدنظر یافته­ی جلوه­های هیجانی صورت و  پرسشنامه­ی سبک­های دلبستگی را تکمیل نمودند. یافته­ها حاک...

متن کامل

تشخیص حالت احساسی از سیگنال گفتار در حالت مستقل از گوینده با استفاده از آنتروپی بسته موجک

در این مقاله آنتروپی بسته موجک برای بازشناسی احساسات از گفتار در حالت مستقل از گوینده پیشنهاد شده است. پس از پیش‌پردازش، بسته موجکِ db3 سطح 4 در هر فریم محاسبه شده است و آنتروپی شانون در گره‌های آن به عنوان ویژگی در نظر گرفته شده است. ضمناً ویژگی‌های نواییِ گفتار شامل فرکانس چهار فرمنت اول، جیتر یا دامنه تغییرات فرکانس گام و شیمر یا دامنه تغییرات انرژی به عنوان ویژگی‌های پرکاربرد در حوزه تشخیص احس...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز - دانشکده مهندسی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023